Numerical Methods for Solving Logarithmic Nonlinear Schrödinger’s Equation
نویسندگان
چکیده
In this study, we will construct numerical techniques for tackling the logarithmic Schrödinger’s nonlinear equation utilizing explicit scheme and Crank-Nicolson of finite difference method. These schemes be subjected to accuracy stability tests before being used. Efficacy robustness under consideration demonstrated using an exact solution, one-Gausson, as well conserved quantities. Interaction two-soliton conducted. The findings revealed, interplay behavior is flexible.
منابع مشابه
Numerical methods for nonlinear Dirac equation
This paper presents a review of the current state-of-the-art of numerical methods for nonlinear Dirac (NLD) equation. Several methods are extendedly proposed for the (1+1)-dimensional NLD equation with the scalar and vector self-interaction and analyzed in the way of the accuracy and the time reversibility as well as the conservation of the discrete charge, energy and linear momentum. Those met...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولNumerical approach for solving a class of nonlinear fractional differential equation
It is commonly accepted that fractional differential equations play an important role in the explanation of many physical phenomena. For this reason we need a reliable and efficient technique for the solution of fractional differential equations. This paper deals with the numerical solution of a class of fractional differential equation. The fractional derivatives are described...
متن کاملLatus: A new accelerator for generating combined iterative methods in solving nonlinear equation
متن کامل
Parallel Numerical Methods for Solving Nonlinear Evolution Equations
Nonlinear evolution equations are of tremendous interest in both theory and applications. In this talk we introduce parallel algorithms for numerical simulations of CMKdV, NLS and and CNLS equations in 1+1 and 1+2 dimensions. The parallel methods are implemented on multiprocessor system. Numerical experiments have shown that these methods give accurate results and considerable speedup. This tal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics and Physics
سال: 2022
ISSN: ['2327-4379', '2327-4352']
DOI: https://doi.org/10.4236/jamp.2022.1012242